Feature Fidelity Task Team

Peter Cornillon and Cristina Gonzalez Haro

URI

GHRSST XXII 7 June 2021

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Task Team Members

- Peter Cornillon (Co-Chair)
- Cristina Gonzalez Haro (Co-Chair)
- Owen Embury
- Irina Gladkova
- Lei Guan
- Jordi Isern-Fontanet
- Chris Merchant
- Gary Wick

2/10

To address the impact of artifacts and noise in satellite-derived SST fields on the faithful reproduction of mesoscale and smaller oceanographic features: fronts, eddies, gradients,...

Specifically, features smaller than O(100 km)

Defined by differences in SST values over the spatial scales of interest.

- Critical to such studies is the uncertainty of these differences.
 - The emphasis of the SST community to date has been on the accuracy of retrievals.
 - But for feature related work it is often the precision of retrievals that is critical
 - The focus of the F2T2 is on the precision of retrievals
- At the outset we defined three tasks:
 - A classification of the ways in which SST fields may be corrupted resulting in:
 - The objuscation or distortion of leatures, or
 - The introduction of non-oceanographic leatures.
 - The identification of the 'effects' giving rise to these problems, and
 - Putting it all together outlining approaches to quantify the uncertainties of interest.
 - Error propagation a metrological approach
 - Uncertainty determined from the SST fields themselves
- Our focus over the past year has been on the first of these.

And we have found that we need YOUR help here!

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

To address the impact of artifacts and noise in satellite-derived SST fields on the faithful reproduction of mesoscale and smaller oceanographic features: fronts, eddies, gradients,...

Specifically, features smaller than O(100 km)

Defined by differences in SST values over the spatial scales of interest.

- Critical to such studies is the uncertainty of these differences.
 - The emphasis of the SST community to date has been on the accuracy of retrievals.
 - But for feature related work it is often the precision of retrievals that is critical.
 - The focus of the F2T2 is on the precision of retrievals.
- At the outset we defined three tasks:
 - A classification of the ways in which SST fields may be corrupted resulting in:
 - The objuscation or distortion of leatures, or
 - The introduction of non-oceanographic leatures.
 - The identification of the 'effects' giving rise to these problems, and
 - Putting it all together outlining approaches to quantify the uncertainties of interest.
 - Error propagation a metrological approach.
 - Uncertainty determined from the SST fields themselves
- Our focus over the past year has been on the first of these.

And we have found that we need YOUR help here!

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

To address the impact of artifacts and noise in satellite-derived SST fields on the faithful reproduction of mesoscale and smaller oceanographic features: fronts, eddies, gradients,...

Specifically, features smaller than O(100 km)

Defined by differences in SST values over the spatial scales of interest.

- Critical to such studies is the uncertainty of these differences.
 - The emphasis of the SST community to date has been on the accuracy of retrievals.
 - But for feature related work it is often the precision of retrievals that is critical.
 - The focus of the F2T2 is on the precision of retrievals.
- At the outset we defined three tasks:
 - A classification of the ways in which SST fields may be corrupted resulting in:
 - The objuscation or distortion of leatures, or
 - The introduction of non-oceanographic leatures.
 - The identification of the 'effects' giving rise to these problems, and
 - Putting it all together outlining approaches to quantify the uncertainties of interest.
 - Error propagation a metrological approach.
 - Uncertainty determined from the SST fields themselves
- Our focus over the past year has been on the first of these.

And we have found that we need YOUR help here!

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

To address the impact of artifacts and noise in satellite-derived SST fields on the faithful reproduction of mesoscale and smaller oceanographic features: fronts, eddies, gradients,...

Specifically, features smaller than O(100 km)

Defined by differences in SST values over the spatial scales of interest.

- Critical to such studies is the uncertainty of these differences.
 - The emphasis of the SST community to date has been on the accuracy of retrievals.
 - But for feature related work it is often the precision of retrievals that is critical.
 - The focus of the F2T2 is on the precision of retrievals.
- At the outset we defined three tasks:
 - A classification of the ways in which SST fields may be corrupted resulting in:
 - The objuscation or distortion of leatures, or
 - The introduction of non-oceanographic leatures.
 - The identification of the 'effects' giving rise to these problems, and
 - Putting it all together outlining approaches to quantify the uncertainties of interest.
 - Error propagation a metrological approach.
 - Uncertainty determined from the SST fields themselves
- Our focus over the past year has been on the first of these.

And we have found that we need YOUR help here!

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨ

To address the impact of artifacts and noise in satellite-derived SST fields on the faithful reproduction of mesoscale and smaller oceanographic features: fronts, eddies, gradients,...

Specifically, features smaller than O(100 km)

Defined by differences in SST values over the spatial scales of interest.

- Critical to such studies is the uncertainty of these differences.
 - The emphasis of the SST community to date has been on the accuracy of retrievals.
 - But for feature related work it is often the precision of retrievals that is critical.
 - The focus of the F2T2 is on the precision of retrievals.
- At the outset we defined three tasks:
 - A classification of the ways in which SST fields may be corrupted resulting in:
 - The objuscation or distortion of leatures, or
 - The introduction of non-oceanographic leatures.
 - The identification of the 'effects' giving rise to these problems, and
 - Putting it all together outlining approaches to quantify the uncertainties of interest.
 - Error propagation a metrological approach.
 - Uncertainty determined from the SST fields themselves
- Our focus over the past year has been on the first of these.

And we have found that we need YOUR help here!

◆□▼ ▲□▼ ▲目▼ ▲目▼ ▲□▼

To address the impact of artifacts and noise in satellite-derived SST fields on the faithful reproduction of mesoscale and smaller oceanographic features: fronts, eddies, gradients,...

Specifically, features smaller than O(100 km)

Defined by differences in SST values over the spatial scales of interest.

- Critical to such studies is the uncertainty of these differences.
 - The emphasis of the SST community to date has been on the accuracy of retrievals.
 - But for feature related work it is often the precision of retrievals that is critical.
 - The focus of the F2T2 is on the precision of retrievals.
- At the outset we defined three tasks:
 - A classification of the ways in which SST fields may be corrupted resulting in:
 - The objuscation or distortion of leatures, or
 - The introduction of non-oceanographic leatures.
 - The identification of the 'effects' giving rise to these problems, and
 - Putting it all together outlining approaches to quantify the uncertainties of interest.
 - Error propagation a metrological approach
 - Uncertainty determined from the SST fields themselves
- Our focus over the past year has been on the first of these.

And we have found that we need YOUR help here!

(日)

To address the impact of artifacts and noise in satellite-derived SST fields on the faithful reproduction of mesoscale and smaller oceanographic features: fronts, eddies, gradients,...

Specifically, features smaller than O(100 km)

Defined by differences in SST values over the spatial scales of interest.

- Critical to such studies is the uncertainty of these differences.
 - The emphasis of the SST community to date has been on the accuracy of retrievals.
 - But for feature related work it is often the precision of retrievals that is critical.
 - The focus of the F2T2 is on the precision of retrievals.
- At the outset we defined three tasks:
 - A classification of the ways in which SST fields may be corrupted resulting in:
 - The obfuscation or distortion of features, or
 - The introduction of non-oceanographic features.
 - The identification of the 'effects' giving rise to these problems, and
 - Putting it all together outlining approaches to quantify the uncertainties of interest.
 - Error propagation a metrological approach
 - Uncertainty determined from the SST fields themselves.
- Our focus over the past year has been on the first of these.

And we have found that we need YOUR help here!

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - つへの

To address the impact of artifacts and noise in satellite-derived SST fields on the faithful reproduction of mesoscale and smaller oceanographic features: fronts, eddies, gradients,...

Specifically, features smaller than O(100 km)

Defined by differences in SST values over the spatial scales of interest.

- Critical to such studies is the uncertainty of these differences.
 - The emphasis of the SST community to date has been on the accuracy of retrievals.
 - But for feature related work it is often the precision of retrievals that is critical.
 - The focus of the F2T2 is on the precision of retrievals.
- At the outset we defined three tasks:
 - A classification of the ways in which SST fields may be corrupted resulting in:
 - The obfuscation or distortion of features, or
 - The introduction of non-oceanographic features.
 - The identification of the 'effects' giving rise to these problems, and
 - Putting it all together outlining approaches to quantify the uncertainties of interest.
 - Error propagation a metrological approach
 - Uncertainty determined from the SST fields themselves.
- Our focus over the past year has been on the first of these.

And we have found that we need YOUR help here!

To address the impact of artifacts and noise in satellite-derived SST fields on the faithful reproduction of mesoscale and smaller oceanographic features: fronts, eddies, gradients,...

Specifically, features smaller than O(100 km)

Defined by differences in SST values over the spatial scales of interest.

- Critical to such studies is the uncertainty of these differences.
 - The emphasis of the SST community to date has been on the accuracy of retrievals.
 - But for feature related work it is often the precision of retrievals that is critical.
 - The focus of the F2T2 is on the precision of retrievals.
- At the outset we defined three tasks:
 - A classification of the ways in which SST fields may be corrupted resulting in:
 - The obfuscation or distortion of features, or
 - The introduction of non-oceanographic features.
 - The identification of the 'effects' giving rise to these problems, and
 - Putting it all together outlining approaches to quantify the uncertainties of interest.
 - Error propagation a metrological approach
 - Uncertainty determined from the SST fields themselves.
- Our focus over the past year has been on the first of these.

And we have found that we need YOUR help here!

To address the impact of artifacts and noise in satellite-derived SST fields on the faithful reproduction of mesoscale and smaller oceanographic features: fronts, eddies, gradients,...

Specifically, features smaller than O(100 km)

Defined by differences in SST values over the spatial scales of interest.

- Critical to such studies is the uncertainty of these differences.
 - The emphasis of the SST community to date has been on the accuracy of retrievals.
 - But for feature related work it is often the precision of retrievals that is critical.
 - The focus of the F2T2 is on the precision of retrievals.
- At the outset we defined three tasks:
 - A classification of the ways in which SST fields may be corrupted resulting in:
 - The obfuscation or distortion of features, or
 - The introduction of non-oceanographic features.
 - The identification of the 'effects' giving rise to these problems, and
 - Outting it all together outlining approaches to quantify the uncertainties of interest.
 - Error propagation a metrological approach
 - Uncertainty determined from the SST fields themselves.
- Our focus over the past year has been on the first of these.

And we have found that we need YOUR help here!

To address the impact of artifacts and noise in satellite-derived SST fields on the faithful reproduction of mesoscale and smaller oceanographic features: fronts, eddies, gradients,...

Specifically, features smaller than O(100 km)

Defined by differences in SST values over the spatial scales of interest.

- Critical to such studies is the uncertainty of these differences.
 - The emphasis of the SST community to date has been on the accuracy of retrievals.
 - But for feature related work it is often the precision of retrievals that is critical.
 - The focus of the F2T2 is on the precision of retrievals.
- At the outset we defined three tasks:
 - A classification of the ways in which SST fields may be corrupted resulting in:
 - The obfuscation or distortion of features, or
 - The introduction of non-oceanographic features.
 - The identification of the 'effects' giving rise to these problems, and
 - Putting it all together outlining approaches to quantify the uncertainties of interest.
 - Error propagation a metrological approach
 - Uncertainty determined from the SST fields themselves
- Our focus over the past year has been on the first of these.

And we have found that we need YOUR help here!

To address the impact of artifacts and noise in satellite-derived SST fields on the faithful reproduction of mesoscale and smaller oceanographic features: fronts, eddies, gradients,...

Specifically, features smaller than O(100 km)

Defined by differences in SST values over the spatial scales of interest.

- Critical to such studies is the uncertainty of these differences.
 - The emphasis of the SST community to date has been on the accuracy of retrievals.
 - But for feature related work it is often the precision of retrievals that is critical.
 - The focus of the F2T2 is on the precision of retrievals.
- At the outset we defined three tasks:
 - A classification of the ways in which SST fields may be corrupted resulting in:
 - The obfuscation or distortion of features, or
 - The introduction of non-oceanographic features.
 - The identification of the 'effects' giving rise to these problems, and
 - Putting it all together outlining approaches to quantify the uncertainties of interest.
 - Error propagation a metrological approach
 - Uncertainty determined from the SST fields themselves.
- Our focus over the past year has been on the first of these.

And we have found that we need YOUR help here!

To address the impact of artifacts and noise in satellite-derived SST fields on the faithful reproduction of mesoscale and smaller oceanographic features: fronts, eddies, gradients,...

Specifically, features smaller than O(100 km)

Defined by differences in SST values over the spatial scales of interest.

- Critical to such studies is the uncertainty of these differences.
 - The emphasis of the SST community to date has been on the accuracy of retrievals.
 - But for feature related work it is often the precision of retrievals that is critical.
 - The focus of the F2T2 is on the precision of retrievals.
- At the outset we defined three tasks:
 - A classification of the ways in which SST fields may be corrupted resulting in:
 - The obfuscation or distortion of features, or
 - The introduction of non-oceanographic features.
 - The identification of the 'effects' giving rise to these problems, and
 - Putting it all together outlining approaches to quantify the uncertainties of interest.
 - Error propagation a metrological approach
 - Uncertainty determined from the SST fields themselves.
- Our focus over the past year has been on the first of these.

And we have found that we need YOUR help here!

To address the impact of artifacts and noise in satellite-derived SST fields on the faithful reproduction of mesoscale and smaller oceanographic features: fronts, eddies, gradients,...

Specifically, features smaller than O(100 km)

Defined by differences in SST values over the spatial scales of interest.

- Critical to such studies is the uncertainty of these differences.
 - The emphasis of the SST community to date has been on the accuracy of retrievals.
 - But for feature related work it is often the precision of retrievals that is critical.
 - The focus of the F2T2 is on the precision of retrievals.
- At the outset we defined three tasks:
 - A classification of the ways in which SST fields may be corrupted resulting in:
 - The obfuscation or distortion of features, or
 - The introduction of non-oceanographic features.
 - The identification of the 'effects' giving rise to these problems, and
 - Putting it all together outlining approaches to quantify the uncertainties of interest.
 - Error propagation a metrological approach
 - Uncertainty determined from the SST fields themselves.
- Our focus over the past year has been on the first of these.

And we have found that we need YOUR help here!

To address the impact of artifacts and noise in satellite-derived SST fields on the faithful reproduction of mesoscale and smaller oceanographic features: fronts, eddies, gradients,...

Specifically, features smaller than O(100 km)

Defined by **differences** in SST values over the spatial scales of interest.

- Critical to such studies is the uncertainty of these differences.
 - The emphasis of the SST community to date has been on the accuracy of retrievals.
 - But for feature related work it is often the precision of retrievals that is critical.
 - The focus of the F2T2 is on the precision of retrievals.
- At the outset we defined three tasks:
 - A classification of the ways in which SST fields may be corrupted resulting in:
 - The obfuscation or distortion of features, or
 - The introduction of non-oceanographic features.

 - 2 The identification of the 'effects' giving rise to these problems, and
 - Putting it all together outlining approaches to guantify the uncertainties of interest.
 - Error propagation a metrological approach
 - Uncertainty determined from the SST fields themselves.
- Our focus over the past year has been on the first of these.

To address the impact of artifacts and noise in satellite-derived SST fields on the faithful reproduction of mesoscale and smaller oceanographic features: fronts, eddies, gradients....

Specifically, features smaller than O(100 km)

Defined by **differences** in SST values over the spatial scales of interest.

- Critical to such studies is the uncertainty of these differences.
 - The emphasis of the SST community to date has been on the accuracy of retrievals.
 - But for feature related work it is often the precision of retrievals that is critical.
 - The focus of the F2T2 is on the precision of retrievals.
- At the outset we defined three tasks:
 - A classification of the ways in which SST fields may be corrupted resulting in:
 - The obfuscation or distortion of features, or
 - The introduction of non-oceanographic features.

 - 2 The identification of the 'effects' giving rise to these problems, and
 - Putting it all together outlining approaches to guantify the uncertainties of interest.
 - Error propagation a metrological approach
 - Uncertainty determined from the SST fields themselves.
- Our focus over the past year has been on the first of these.

And we have found that we need YOUR help here!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Examples of corrupted SST fields are presented in the (F2T2 preliminary report[†])
- One, which highlights a number of F2T2 issues, is discussed here (and in S2-ID-038).
 - It is based on the analysis presented by Prochaska in S2-ID-036.
 - 128 × 128 pixel squares were extracted from the L2 MODIS Aqua SST dataset if:
 - > 95% disar
 - 0.2003-2019
 - $\bullet~$ \approx 10⁷ such squares, which we refer to as cutouts.
 - Cutouts falling in 200 km-200 km-5 day non overlapping bins were combined.
 - Along-scan and along-track structure functions determined for the data in each bin.
 - The precision (standard deviation) of the SST retrievals determined for each bin.
 - These were examined as a function of mean SST in the bin and geographically.

https://www.dropbox.com/scl/fi/ut1qmpcawef0e4nf5bedw/Feature_Fidelity_Task_Team.docx?dl=0&rkey=ynlts5osufu8rum6sninv7qjv

- Examples of corrupted SST fields are presented in the (F2T2 preliminary report[†])
- One, which highlights a number of F2T2 issues, is discussed here (and in S2-ID-038).
 - It is based on the analysis presented by Prochaska in S2-ID-036.
 - 128 \times 128 pixel squares were extracted from the L2 MODIS Aqua SST dataset if:
 - Nighttime
 - > 95% clear
 - 2003-2019
 - $\approx 10^7$ such squares, which we refer to as cutouts.
 - Cutouts falling in 200 km-200 km-5 day non overlapping bins were combined.
 - Along-scan and along-track structure functions determined for the data in each bin.
 - The precision (standard deviation) of the SST retrievals determined for each bin.
 - These were examined as a function of mean SST in the bin and geographically.

- Examples of corrupted SST fields are presented in the (F2T2 preliminary report[†])
- One, which highlights a number of F2T2 issues, is discussed here (and in S2-ID-038).
 - It is based on the analysis presented by Prochaska in S2-ID-036.
 - 128 × 128 pixel squares were extracted from the L2 MODIS Aqua SST dataset if:
 Nighttime
 - > 95% clear
 - 2003-2019
 - $\approx 10^7$ such squares, which we refer to as cutouts.
 - Cutouts falling in 200 km-200 km-5 day non overlapping bins were combined.
 - Along-scan and along-track structure functions determined for the data in each bin.
 - The precision (standard deviation) of the SST retrievals determined for each bin.
 - These were examined as a function of mean SST in the bin and geographically.

https://www.dropbox.com/scl/fi/ut1qmpcawef0e4nf5bedw/Feature_Fidelity_Task_Team.docx?dl=0&rkey=ynlts5osufu8rum6sninv7qjv

- Examples of corrupted SST fields are presented in the (F2T2 preliminary report[†])
- One, which highlights a number of F2T2 issues, is discussed here (and in S2-ID-038).
 - It is based on the analysis presented by Prochaska in S2-ID-036.
 - 128 × 128 pixel squares were extracted from the L2 MODIS Aqua SST dataset if:
 - Nighttime
 - > 95% clear
 - 2003-2019
 - $\approx 10^7$ such squares, which we refer to as cutouts.
 - Cutouts falling in 200 km-200 km-5 day non overlapping bins were combined.
 - Along-scan and along-track structure functions determined for the data in each bin.
 - The precision (standard deviation) of the SST retrievals determined for each bin.
 - These were examined as a function of mean SST in the bin and geographically.

- Examples of corrupted SST fields are presented in the (F2T2 preliminary report[†])
- One, which highlights a number of F2T2 issues, is discussed here (and in S2-ID-038).
 - It is based on the analysis presented by Prochaska in S2-ID-036.
 - 128 imes 128 pixel squares were extracted from the L2 MODIS Aqua SST dataset if:
 - Nighttime
 - > 95% clear
 - 2003-2019
 - $\approx 10^7$ such squares, which we refer to as cutouts.
 - Cutouts falling in 200 km-200 km-5 day non overlapping bins were combined.
 - Along-scan and along-track structure functions determined for the data in each bin.
 - The precision (standard deviation) of the SST retrievals determined for each bin.
 - These were examined as a function of mean SST in the bin and geographically.

https://www.dropbox.com/scl/fi/ut1qmpcawef0e4nf5bedw/Feature_Fidelity_Task_Team.docx?dl=0&rkey=ynlts5osufu8rum6sninv7qjv

- Examples of corrupted SST fields are presented in the (F2T2 preliminary report[†])
- One, which highlights a number of F2T2 issues, is discussed here (and in S2-ID-038).
 - It is based on the analysis presented by Prochaska in S2-ID-036.
 - 128 imes 128 pixel squares were extracted from the L2 MODIS Aqua SST dataset if:
 - Nighttime
 - > 95% clear
 - 0 2003-2019
 - $\approx 10^7$ such squares, which we refer to as cutouts.
 - Cutouts falling in 200 km-200 km-5 day non overlapping bins were combined.
 - Along-scan and along-track structure functions determined for the data in each bin.
 - The precision (standard deviation) of the SST retrievals determined for each bin.
 - These were examined as a function of mean SST in the bin and geographically.

- Examples of corrupted SST fields are presented in the (F2T2 preliminary report[†])
- One, which highlights a number of F2T2 issues, is discussed here (and in S2-ID-038).
 - It is based on the analysis presented by Prochaska in S2-ID-036.
 - 128 × 128 pixel squares were extracted from the L2 MODIS Aqua SST dataset if:
 - Nighttime
 - > 95% clear
 - 2003-2019
 - $\approx 10'$ such squares, which we refer to as cutouts.
 - Cutouts falling in 200 km-200 km-5 day non overlapping bins were combined.
 - Along-scan and along-track structure functions determined for the data in each bin.
 - The precision (standard deviation) of the SST retrievals determined for each bin.
 - These were examined as a function of mean SST in the bin and geographically.

- Examples of corrupted SST fields are presented in the (F2T2 preliminary report[†])
- One, which highlights a number of F2T2 issues, is discussed here (and in S2-ID-038).
 - It is based on the analysis presented by Prochaska in S2-ID-036.
 - 128 × 128 pixel squares were extracted from the L2 MODIS Aqua SST dataset if:
 - Nighttime
 - > 95% clear
 - 2003-2019
 - $\approx 10^7$ such squares, which we refer to as cutouts.
 - Cutouts falling in 200 km-200 km-5 day non overlapping bins were combined.
 - Along-scan and along-track structure functions determined for the data in each bin.
 - The precision (standard deviation) of the SST retrievals determined for each bin.
 - These were examined as a function of mean SST in the bin and geographically.

- Examples of corrupted SST fields are presented in the (F2T2 preliminary report[†])
- One, which highlights a number of F2T2 issues, is discussed here (and in S2-ID-038).
 - It is based on the analysis presented by Prochaska in S2-ID-036.
 - 128 × 128 pixel squares were extracted from the L2 MODIS Aqua SST dataset if:
 - Nighttime
 - > 95% clear
 - 2003-2019
 - $\approx 10^7$ such squares, which we refer to as cutouts.
 - Cutouts falling in 200 km-200 km-5 day non overlapping bins were combined.
 - Along-scan and along-track structure functions determined for the data in each bin.
 - The precision (standard deviation) of the SST retrievals determined for each bin.
 - These were examined as a function of mean SST in the bin and geographically.

- Examples of corrupted SST fields are presented in the (F2T2 preliminary report[†])
- One, which highlights a number of F2T2 issues, is discussed here (and in S2-ID-038).
 - It is based on the analysis presented by Prochaska in S2-ID-036.
 - 128 × 128 pixel squares were extracted from the L2 MODIS Aqua SST dataset if:
 - Nighttime
 - > 95% clear
 - 2003-2019
 - $\approx 10^7$ such squares, which we refer to as cutouts.
 - Cutouts falling in 200 km-200 km-5 day non overlapping bins were combined.
 - Along-scan and along-track structure functions determined for the data in each bin.
 - The precision (standard deviation) of the SST retrievals determined for each bin.
 - These were examined as a function of mean SST in the bin and geographically.

- Examples of corrupted SST fields are presented in the (F2T2 preliminary report[†])
- One, which highlights a number of F2T2 issues, is discussed here (and in S2-ID-038).
 - It is based on the analysis presented by Prochaska in S2-ID-036.
 - 128 × 128 pixel squares were extracted from the L2 MODIS Aqua SST dataset if:
 - Nighttime
 - > 95% clear
 - 2003-2019
 - $\bullet~\approx 10^7$ such squares, which we refer to as cutouts.
 - Cutouts falling in 200 km-200 km-5 day non overlapping bins were combined.
 - Along-scan and along-track structure functions determined for the data in each bin.
 - The precision (standard deviation) of the SST retrievals determined for each bin.
 - These were examined as a function of mean SST in the bin and geographically.

- Examples of corrupted SST fields are presented in the (F2T2 preliminary report[†])
- One, which highlights a number of F2T2 issues, is discussed here (and in S2-ID-038).
 - It is based on the analysis presented by Prochaska in S2-ID-036.
 - 128 × 128 pixel squares were extracted from the L2 MODIS Aqua SST dataset if:
 - Nighttime
 - > 95% clear
 - 2003-2019
 - $\approx 10^7$ such squares, which we refer to as cutouts.
 - Cutouts falling in 200 km-200 km-5 day non overlapping bins were combined.
 - Along-scan and along-track structure functions determined for the data in each bin.
 - The precision (standard deviation) of the SST retrievals determined for each bin.
 - These were examined as a function of mean SST in the bin and geographically.

- A well defined linear dependence of σ on mean SST
- A low σ region for mean SST above about 22°.
- The values for low SST are very close to the stated NEΔT of 0.03 K.

- A well defined linear dependence of σ on mean SST
- A low σ region for mean SST above about 22°.
- The values for low SST are very close to the stated NEΔT of 0.03 K.

- A well defined linear dependence of σ on mean SST
- A low σ region for mean SST above about 22°.
- The values for low SST are very close to the stated NEΔT of 0.03 K.

- A well defined linear dependence of σ on mean SST
- A low σ region for mean SST above about 22°.
- The values for low \overline{SST} are very close to the stated NE Δ T of 0.03 K.

Along-Scan $\sigma(\overline{SST})$: $\sigma = 0.031 + 0.0048 \times \overline{SST}$ Along-Track $\sigma(SST)$: $\sigma = 0.038 + 0.0054 \times \overline{SST}$

Along-Scan $\sigma(\overline{SST})$: $\sigma = 0.031 + 0.0048 \times \overline{SST}$ Along-Track $\sigma(\overline{SST})$: $\sigma = 0.038 + 0.0054 \times \overline{SST}$

6/10

Geographic Location of low σ s with high $\overline{\text{SST}}$ s

Geographic Location of low σ s with high $\overline{\text{SSTs}}$

Impact on Feature Fidelity - A Simple Simulation

• Generate $10^4 3 \times 3$ pixel squares with a given x-gradient, no y-gradient, white noise.

- Determine the mean and σ of the Sobel gradient magnitude for each ensemble.
- For $\nabla_x \text{SST} \approx 0.05 \, K/km$, $|\nabla \text{SST}|$ is overestimated by up to 50% with a $\sigma \approx 0.07 \, K$

Impact on Feature Fidelity - A Simple Simulation

- Generate $10^4 3 \times 3$ pixel squares with a given x-gradient, no y-gradient, white noise.
- Determine the mean and σ of the Sobel gradient magnitude for each ensemble.
- For $\nabla_x \text{SST} \approx 0.05 \, K/km$, $|\nabla \text{SST}|$ is overestimated by up to 50% with a $\sigma \approx 0.07 \, K$

Impact on Feature Fidelity - A Simple Simulation

- Generate $10^4 3 \times 3$ pixel squares with a given x-gradient, no y-gradient, white noise.
- Determine the mean and σ of the Sobel gradient magnitude for each ensemble.
- For $\nabla_x \text{SST} \approx 0.05 \, K/km$, $|\nabla \text{SST}|$ is overestimated by up to 50% with a $\sigma \approx 0.07 \, K$

• The MODIS example presented highlights several points with regard to feature fidelity:

- \bigcirc Hidden in 'quality' info generally presented are characteristics with significant impacts on FF
 - FF has, to a large extent, been overlooked in the generation (and characterization) of SST fields.
- 2 The impacts may depend on location, SST, ... The issues are complicated.
- The highlighted problems presented here were uncovered in the use of the data.

Two approaches have been proposed to quantify contributors to the degradation of FF.

- Error propagation the metrological approach.
- Uncertainty determined from the SST fields themselves.
- The MODIS example underlines the potential complementarity of these approaches:
 - Approaches based on the actual SST fields can be used to inform the metrological approach.
 - With input from the user community providing substantial help in the process.
- Two suggestions that the GHRSST community might want to consider:

Including in SST products estimates of precision based on the local structure function.

- In general, the data are already in memory
- And it is relatively straightforward to determine a singer in the second straightforward.
- This would enable characterization of potential FF issues requiring further analysis.
- Seeking help from the user community in identifying problems related to FF

- The MODIS example presented highlights several points with regard to feature fidelity:
 - Hidden in 'quality' info generally presented are characteristics with significant impacts on FF
 - FF has, to a large extent, been overlooked in the generation (and characterization) of SST fields.
 - The impacts may depend on location, SST, ... The issues are complicated.
- The highlighted problems presented here were uncovered in the use of the data.
- Two approaches have been proposed to quantify contributors to the degradation of FF.
 - Error propagation the metrological approach.
 - Uncertainty determined from the SST fields themselves.
- The MODIS example underlines the potential complementarity of these approaches:
 - Approaches based on the actual SST fields can be used to inform the metrological approach.
 - With input from the user community providing substantial help in the process.
- Two suggestions that the GHRSST community might want to consider:
- Including in SST products estimates of precision based on the local structure function.
 - In general, the data are already in memory
 - And it is relatively straight toward to determine a shown in the economic shows.
 - This would enable characterization of potential FF issues requiring further analysis.
 - Seeking help from the user community in identifying problems related to FF
 - (ロ)(母)(ヨ)(ヨ)(ヨ)

- The MODIS example presented highlights several points with regard to feature fidelity:
- Hidden in 'quality' info generally presented are characteristics with significant impacts on FF
 - FF has, to a large extent, been overlooked in the generation (and characterization) of SST fields.
 - The impacts may depend on location, SST, ... The issues are complicated.
- 3 The highlighted problems presented here were uncovered in the use of the data.
- Two approaches have been proposed to quantify contributors to the degradation of FF.
 - Error propagation the metrological approach.
 - Uncertainty determined from the SST fields themselves.
- The MODIS example underlines the potential complementarity of these approaches:
 - Approaches based on the actual SST fields can be used to inform the metrological approach.
 - With input from the user community providing substantial help in the process.
- Two suggestions that the GHRSST community might want to consider:
- Including in SST products estimates of precision based on the local structure function.
 - In general, the data are already in memory
 - σ . And it is relatively straightforward to determine σ shown in the example above.
 - This would enable characterization of potential EE issues requiring further analysis.
 - Seeking help from the user community in identifying problems related to FF
 - (ロ)(得)(ヨ)(ヨ)(ヨ)

- The MODIS example presented highlights several points with regard to feature fidelity:
- Hidden in 'quality' info generally presented are characteristics with significant impacts on FF
 - FF has, to a large extent, been overlooked in the generation (and characterization) of SST fields.
- Provide the impacts may depend on location, SST, ... The issues are complicated.
- The highlighted problems presented here were uncovered in the use of the data.
- Two approaches have been proposed to quantify contributors to the degradation of FF.
 - Error propagation the metrological approach.
 - Uncertainty determined from the SST fields themselves.
- The MODIS example underlines the potential complementarity of these approaches:
 - Approaches based on the actual SST fields can be used to inform the metrological approach.
 - With input from the user community providing substantial help in the process.
- Two suggestions that the GHRSST community might want to consider:
- Including in SST products estimates of precision based on the local structure function.
 - In general, the data are already in memory
 - And it is relatively straightforward to determine a shown in the example above.
 - This would enable characterization of potential PE issues requiring further analysis.
 - Seeking help from the user community in identifying problems related to FF
 - (ロ)(得)(言)(言) (言)

- The MODIS example presented highlights several points with regard to feature fidelity:
- Hidden in 'quality' info generally presented are characteristics with significant impacts on FF
 - FF has, to a large extent, been overlooked in the generation (and characterization) of SST fields.
- Provide the impacts may depend on location, SST, ... The issues are complicated.
- The highlighted problems presented here were uncovered in the use of the data.
- Two approaches have been proposed to quantify contributors to the degradation of FF.
 - Error propagation the metrological approach.
 - Uncertainty determined from the SST fields themselves.
- The MODIS example underlines the potential complementarity of these approaches:
 - Approaches based on the actual SST fields can be used to inform the metrological approach.
 - With input from the user community providing substantial help in the process.
- Two suggestions that the GHRSST community might want to consider:
- Including in SST products estimates of precision based on the local structure function.
 - In general, the data are already in memory
 - And it is relatively straight toward to determine a shown in the economic shows.
 - This would enable characterization of potential EE issues requiring further analysis.
 - Seeking help from the user community in identifying problems related to FF

- The MODIS example presented highlights several points with regard to feature fidelity:
- Hidden in 'quality' info generally presented are characteristics with significant impacts on FF
 - FF has, to a large extent, been overlooked in the generation (and characterization) of SST fields.
- Provide the impacts may depend on location, SST, ... The issues are complicated.
- The highlighted problems presented here were uncovered in the use of the data.

Two approaches have been proposed to quantify contributors to the degradation of FF.

- Error propagation the metrological approach.
- Uncertainty determined from the SST fields themselves.
- The MODIS example underlines the potential complementarity of these approaches:
 - Approaches based on the actual SST fields can be used to inform the metrological approach.
 - With input from the user community providing substantial help in the process.
- Two suggestions that the GHRSST community might want to consider:
- Including in SST products estimates of precision based on the local structure function.
 - In general, the data are already in memory
 - σ . And it is relatively straightforward to determine σ shown in the example above.
 - This would enable characterization of potential EE issues requiring further analysis.
 - Seeking help from the user community in identifying problems related to FF
 - (日)(得)(三)(三)

- The MODIS example presented highlights several points with regard to feature fidelity:
- Hidden in 'quality' info generally presented are characteristics with significant impacts on FF
 - FF has, to a large extent, been overlooked in the generation (and characterization) of SST fields.
- Provide the impacts may depend on location, SST, ... The issues are complicated.
- The highlighted problems presented here were uncovered in the use of the data.

Two approaches have been proposed to quantify contributors to the degradation of FF.

Error propagation – the metrological approach.

- Uncertainty determined from the SST fields themselves.
- The MODIS example underlines the potential complementarity of these approaches:
 - Approaches based on the actual SST fields can be used to inform the metrological approach.
 - With input from the user community providing substantial help in the process.
- Two suggestions that the GHRSST community might want to consider:
- Including in SST products estimates of precision based on the local structure function.
 - In general, the data are already in memory
 - And it is relatively straightforward to determine a shown in the example above.
 - This would enable characterization of potential EE issues requiring further analysis.
 - Seeking help from the user community in identifying problems related to FF

- The MODIS example presented highlights several points with regard to feature fidelity:
- Hidden in 'quality' info generally presented are characteristics with significant impacts on FF
 - FF has, to a large extent, been overlooked in the generation (and characterization) of SST fields.
- Provide the impacts may depend on location, SST, ... The issues are complicated.
- The highlighted problems presented here were uncovered in the use of the data.
- Two approaches have been proposed to quantify contributors to the degradation of FF.
 - Error propagation the metrological approach.
 - Uncertainty determined from the SST fields themselves.
- The MODIS example underlines the potential complementarity of these approaches:
 - Approaches based on the actual SST fields can be used to inform the metrological approach.
 - With input from the user community providing substantial help in the process.
- Two suggestions that the GHRSST community might want to consider:
- Including in SST products estimates of precision based on the local structure function.
 - In general, the data are already in memory
 - And it is relatively straightforward to determine a shown in the example above.
 - This would enable characterization of potential EE issues requiring further analysis.
 - Seeking help from the user community in identifying problems related to FF

- The MODIS example presented highlights several points with regard to feature fidelity:
- Hidden in 'quality' info generally presented are characteristics with significant impacts on FF
 - FF has, to a large extent, been overlooked in the generation (and characterization) of SST fields.
- 2 The impacts may depend on location, SST, ... The issues are complicated.
- The highlighted problems presented here were uncovered in the use of the data.
- Two approaches have been proposed to quantify contributors to the degradation of FF.
 - Error propagation the metrological approach.
 - Uncertainty determined from the SST fields themselves.
- The MODIS example underlines the potential complementarity of these approaches:
 - Approaches based on the actual SST fields can be used to inform the metrological approach.
 - With input from the user community providing substantial help in the process.
- Two suggestions that the GHRSST community might want to consider:
- Including in SST products estimates of precision based on the local structure function.
 - In general, the data are already in memory
 - And it is relatively straightforward to determine a shown in the example above.
 - This would enable characterization of potential FF issues requiring further analysis.
 - Seeking help from the user community in identifying problems related to FF

- The MODIS example presented highlights several points with regard to feature fidelity:
- Hidden in 'quality' info generally presented are characteristics with significant impacts on FF
 - FF has, to a large extent, been overlooked in the generation (and characterization) of SST fields.
- 2 The impacts may depend on location, SST, ... The issues are complicated.
- The highlighted problems presented here were uncovered in the use of the data.
- Two approaches have been proposed to quantify contributors to the degradation of FF.
 - Error propagation the metrological approach.
 - Uncertainty determined from the SST fields themselves.
- The MODIS example underlines the potential complementarity of these approaches:
 - Approaches based on the actual SST fields can be used to inform the metrological approach.
 - With input from the user community providing substantial help in the process.
- Two suggestions that the GHRSST community might want to consider:
- Including in SST products estimates of precision based on the local structure function.
 - In general, the data are already in memory
 - a And it is relatively straightforward to determine a shown in the example above.
 - This would enable characterization of potential FF issues requiring further analysis.
 - Seeking help from the user community in identifying problems related to FF

- The MODIS example presented highlights several points with regard to feature fidelity:
- Hidden in 'quality' info generally presented are characteristics with significant impacts on FF
 - FF has, to a large extent, been overlooked in the generation (and characterization) of SST fields.
- Interimpacts may depend on location, SST, ... The issues are complicated.
- The highlighted problems presented here were uncovered in the use of the data.
- Two approaches have been proposed to quantify contributors to the degradation of FF.
 - Error propagation the metrological approach.
 - Uncertainty determined from the SST fields themselves.
- The MODIS example underlines the potential complementarity of these approaches:
 - Approaches based on the actual SST fields can be used to inform the metrological approach.
 - With input from the user community providing substantial help in the process.
- Two suggestions that the GHRSST community might want to consider:
- Including in SST products estimates of precision based on the local structure function.
 - In general, the data are already in memory.
 - \circ And it is relatively straightforward to determine σ shown in the example above.
 - This would enable characterization of potential FE issues requiring further analysis...
- Seeking help from the user community in identifying problems related to FF

イロト 不得 トイヨト イヨト 三日

- The MODIS example presented highlights several points with regard to feature fidelity:
- Hidden in 'quality' info generally presented are characteristics with significant impacts on FF
 - FF has, to a large extent, been overlooked in the generation (and characterization) of SST fields.
- Provide the impacts may depend on location, SST, ... The issues are complicated.
- The highlighted problems presented here were uncovered in the use of the data.
- Two approaches have been proposed to quantify contributors to the degradation of FF.
 - Error propagation the metrological approach.
 - Uncertainty determined from the SST fields themselves.
- The MODIS example underlines the potential complementarity of these approaches:
 - Approaches based on the actual SST fields can be used to inform the metrological approach.
 - With input from the user community providing substantial help in the process.
- Two suggestions that the GHRSST community might want to consider:
- Including in SST products estimates of precision based on the local structure function.
 - In general, the data are already in memory
 - And it is relatively straightforward to determine σ shown in the example above.
 - This would enable characterization of potential FF issues requiring further analysis.
- Seeking help from the user community in identifying problems related to FF
 - The MODIS example is just one of a number of ways in which corrupted fields can impact FF.

- The MODIS example presented highlights several points with regard to feature fidelity:
- Hidden in 'quality' info generally presented are characteristics with significant impacts on FF
 - FF has, to a large extent, been overlooked in the generation (and characterization) of SST fields.
- Interimpacts may depend on location, SST, ... The issues are complicated.
- The highlighted problems presented here were uncovered in the use of the data.
- Two approaches have been proposed to quantify contributors to the degradation of FF.
 - Error propagation the metrological approach.
 - Uncertainty determined from the SST fields themselves.
- The MODIS example underlines the potential complementarity of these approaches:
 - Approaches based on the actual SST fields can be used to inform the metrological approach.
 - With input from the user community providing substantial help in the process.
- Two suggestions that the GHRSST community might want to consider:

Including in SST products estimates of precision based on the local structure function.

- In general, the data are already in memory
- And it is relatively straightforward to determine σ shown in the example above
- This would enable characterization of potential FF issues requiring further analysis.
- Seeking help from the user community in identifying problems related to FF
 - The MODIS example is just one of a number of ways in which corrupted fields can impact FF.

- The MODIS example presented highlights several points with regard to feature fidelity:
- Hidden in 'quality' info generally presented are characteristics with significant impacts on FF
 - FF has, to a large extent, been overlooked in the generation (and characterization) of SST fields.
- Interimpacts may depend on location, SST, ... The issues are complicated.
- The highlighted problems presented here were uncovered in the use of the data.
- Two approaches have been proposed to quantify contributors to the degradation of FF.
 - Error propagation the metrological approach.
 - Uncertainty determined from the SST fields themselves.
- The MODIS example underlines the potential complementarity of these approaches:
 - Approaches based on the actual SST fields can be used to inform the metrological approach.
 - With input from the user community providing substantial help in the process.
- Two suggestions that the GHRSST community might want to consider:

Including in SST products estimates of precision based on the local structure function.

- In general, the data are already in memory
- And it is relatively straightforward to determine σ shown in the example above
- This would enable characterization of potential FF issues requiring further analysis.
- Seeking help from the user community in identifying problems related to FF
- The MODIS example is just one of a number of ways in which corrupted fields can impact FF.

- The MODIS example presented highlights several points with regard to feature fidelity:
- Hidden in 'quality' info generally presented are characteristics with significant impacts on FF
 - FF has, to a large extent, been overlooked in the generation (and characterization) of SST fields.
- Interimpacts may depend on location, SST, ... The issues are complicated.
- The highlighted problems presented here were uncovered in the use of the data.
- Two approaches have been proposed to quantify contributors to the degradation of FF.
 - Error propagation the metrological approach.
 - Uncertainty determined from the SST fields themselves.
- The MODIS example underlines the potential complementarity of these approaches:
 - Approaches based on the actual SST fields can be used to inform the metrological approach.
 - With input from the user community providing substantial help in the process.
- Two suggestions that the GHRSST community might want to consider:
- Including in SST products estimates of precision based on the local structure function.
 - In general, the data are already in memory
 - And it is relatively straightforward to determine σ shown in the example above.
 - This would enable characterization of potential FF issues requiring further analysis.
 - Seeking help from the user community in identifying problems related to FF
 - The MODIS example is just one of a number of ways in which corrupted fields can impact FF.

- The MODIS example presented highlights several points with regard to feature fidelity:
- Hidden in 'quality' info generally presented are characteristics with significant impacts on FF
 - FF has, to a large extent, been overlooked in the generation (and characterization) of SST fields.
- Interimpacts may depend on location, SST, ... The issues are complicated.
- The highlighted problems presented here were uncovered in the use of the data.
- Two approaches have been proposed to quantify contributors to the degradation of FF.
 - Error propagation the metrological approach.
 - Uncertainty determined from the SST fields themselves.
- The MODIS example underlines the potential complementarity of these approaches:
 - Approaches based on the actual SST fields can be used to inform the metrological approach.
 - With input from the user community providing substantial help in the process.
- Two suggestions that the GHRSST community might want to consider:
- Including in SST products estimates of precision based on the local structure function.
 - In general, the data are already in memory
 - And it is relatively straightforward to determine σ shown in the example above.
 - This would enable characterization of potential FF issues requiring further analysis.
 - Seeking help from the user community in identifying problems related to FF
 - The MODIS example is just one of a number of ways in which corrupted fields can impact FF.

- The MODIS example presented highlights several points with regard to feature fidelity:
- Hidden in 'quality' info generally presented are characteristics with significant impacts on FF
 - FF has, to a large extent, been overlooked in the generation (and characterization) of SST fields.
- Interimpacts may depend on location, SST, ... The issues are complicated.
- The highlighted problems presented here were uncovered in the use of the data.
- Two approaches have been proposed to quantify contributors to the degradation of FF.
 - Error propagation the metrological approach.
 - Uncertainty determined from the SST fields themselves.
- The MODIS example underlines the potential complementarity of these approaches:
 - Approaches based on the actual SST fields can be used to inform the metrological approach.
 - With input from the user community providing substantial help in the process.
- Two suggestions that the GHRSST community might want to consider:
- Including in SST products estimates of precision based on the local structure function.
 - In general, the data are already in memory
 - And it is relatively straightforward to determine σ shown in the example above.
 - This would enable characterization of potential FF issues requiring further analysis.
- Seeking help from the user community in identifying problems related to FF
 - The MODIS example is just one of a number of ways in which corrupted fields can impact FF.

- The MODIS example presented highlights several points with regard to feature fidelity:
- Hidden in 'quality' info generally presented are characteristics with significant impacts on FF
 - FF has, to a large extent, been overlooked in the generation (and characterization) of SST fields.
- Interimpacts may depend on location, SST, ... The issues are complicated.
- The highlighted problems presented here were uncovered in the use of the data.
- Two approaches have been proposed to quantify contributors to the degradation of FF.
 - Error propagation the metrological approach.
 - Uncertainty determined from the SST fields themselves.
- The MODIS example underlines the potential complementarity of these approaches:
 - Approaches based on the actual SST fields can be used to inform the metrological approach.
 - With input from the user community providing substantial help in the process.
- Two suggestions that the GHRSST community might want to consider:
- Including in SST products estimates of precision based on the local structure function.
 - In general, the data are already in memory
 - And it is relatively straightforward to determine σ shown in the example above.
 - This would enable characterization of potential FF issues requiring further analysis.
- Seeking help from the user community in identifying problems related to FF
 - The MODIS example is just one of a number of ways in which corrupted fields can impact FF.

Please e-mail (to pcornillon@uri.edu) examples of problems you have encountered in current SST products, which have impacted your ability to analyze mesoscale and smaller oceanographic features.

Be sure to include: the issue, the product name, source, date & time...

Please e-mail (to pcornillon@uri.edu) examples of problems you have encountered in current SST products, which have impacted your ability to analyze mesoscale and smaller oceanographic features.

Be sure to include: the issue, the product name, source, date & time...